New Limits on Sterile Neutrino Mixing with Atmospheric Neutrinos

Alex Himmel

Duke University

for the

The Super Kamiokande Collaboration

13th International Conference on Topics in Astroparticle and Underground Physics

September 12th, 2013

Alex Himmel

2

3 neutrinos → 2 mass splittings

3 neutrinos → 2 mass splittings

3 mass splittings → 4 neutrinos

E_{cm} [GeV]

Alex Himme

$$U = \left(egin{array}{ccccc} U_{e1} & U_{e2} & U_{e3} & U_{e4} \ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \ U_{ au 1} & U_{ au 2} & U_{ au 3} & U_{ au 4} \ U_{s1} & U_{s2} & U_{s3} & U_{s4} \end{array}
ight)$$

- One more neutrino adds 7 complex matrix elements
 - but not all independent.
- $1 \Delta m^2$, 3 "angles", 2 phases varying parameterizations

$$- |U_{e4}|^2$$
, $|U_{\mu 4}|^2$, $|U_{\tau 4}|^2$ or θ_{14} , θ_{24} , θ_{34}

One more neutrino adds 8 more parameters

Evidence of Sterile Neutrinos

Both $|U_{e4}|^2$ and $|U_{\mu 4}|^2$ must be > 0 for non-zero probability

Evidence of Sterile Neutrinos

Alex Himmel

What can Super-K tell us?

- 11 years of atmospheric neutrino data.
 - Covering a wide range of L and E
- It is most useful because of what it is not sensitive to:

The size of the sterile mass splitting

Oscillations appear "fast"

3+1 and 3+N models look the same

What can Super-K tell us?

- Short-baseline-related: $|U_{\mu 4}|^2$
 - Driven by new Δm^2
 - Creates fast oscillations across a wide range of v_{μ} samples

- Atmospheric/long-baseline: $|U_{\tau 4}|^2$
 - Accessible only at long distances
 - Oscillations into v_s instead of v_τ
 - Introduces a new matter effect

Super-K Sterile Model

- A fully generic sterile model is difficult computationally
 - Cannot calculate both active (v_e) and sterile (NC) matter effects together
- So, we need to perform 2 different fits:

Fit for $ U_{\mu 4} ^2$	Fit for $ U_{\tau 4} ^2$
 $-v_e$ matter effects only Most accurate $U_{\mu 4} ^2$ limit No $U_{\tau 4} ^2$ limit 	 NC matter effects only Required for $U_{\tau 4} ^2$ Over-constrains $U_{\mu 4} ^2$

Alex Himmel

SK Analysis: Zenith Angle

 Look for change in flavor content vs. L

- Bin by angle and separate μ and e
 - isolate oscillations
 - other samples control systematics
- The original SK analysis was simple: up/down, μ/e

 μ -like, e-like $(\nu_e/\overline{\nu}_e)$, $NC\pi^0$ -like

Low energy ->

Poor $\cos\theta_z$ resolution

Long tracks – all μ -like

Uncontained ->

Poor *E* resolution

Fit for $|U_{\mu 4}|^2$

- Signature is extra disappearance in all μ samples
 - Correlated change at all energies, all $\cos \theta_z$
 - Sensitivity limited by μ/e flux uncertainty

Need to do 2 fits since we cannot calculate v_e and NC matter effects simultaneously

Fit for $|U_{\mu 4}|^2$

 $|U_{\mu 4}|^2 < 0.023$ at 90% C.L.

 $|U_{\mu 4}|^2 < 0.034$ at 99% C.L.

As with similar experiments, no steriledriven v_u disappearance

Need to do 2 fits since we cannot calculate v_e and NC matter effects simultaneously

PRL52, 1384 (1984)

Fit for $|U_{\mu 4}|^2$

 $|U_{\mu 4}|^2 < 0.023$ at 90% C.L.

 $|U_{\mu 4}|^2 < 0.034$ at 99% C.L.

As with similar experiments, no steriledriven ν_{μ} disappearance

Exclude much of the MiniBooNE appearance signal

Need to do 2 fits since we cannot calculate v_e and NC matter effects simultaneously

ArXiv:1303.3011

Fit for $|U_{\tau 4}|^2$ (with $|U_{\mu 4}|^2$)

- Matter effects create shape distortion in PC/Up- μ zenith distribution
 - Less disappearance in most upward bins, still have extra disappearance in downward bins

Need to do 2 fits since we cannot calculate v_e and NC matter effects simultaneously

Fit for $|U_{\tau 4}|^2$ (with $|U_{\mu 4}|^2$)

 $|U_{\tau 4}|^2$ < 0.28 at 99% C.L.

Favors μ to τ oscillations over μ to s

Lack of sterile matter effects places a strong constraint

– Note, $|U_{\mu 4}|^2$ is overconstrained in this fit

All comparisons from:

ArXiv:1303.3011

Conclusions

- Atmospheric neutrinos provide a useful tool to study sterile oscillations
 - Wide range of L/E
 - Measurement independent of Δm^2 and $N_{\text{sterile}} > 1$
- No evidence of sterile neutrinos seen
 - No sterile-driven ν_μ disappearance, consistent with other short- and long-baseline measurements
 - $-\mu$ to *s* oscillations strongly disfavored by the lack of sterile matter effects

Alex Himmel

3+N ≈ 3+1 for Super K

$$P_{\mu\mu} = \left(1 - |U_{\mu 4}|^2\right)^2 P_{\mu\mu}^0 + \sum_{i \ge 4} |U_{\mu i}|^4$$

- The first sterile term:
 - Controls extra disappearance
 - Is the same for any N_{sterile}
- The second sterile term:
 - Fills in the minima
 - Varies for N_{sterile}
- Our experiment is *much* more sensitive to first term
 - Beam experiments, focusing on the first oscillation dip, are sensitive to the second term.

No Matter in 3v

- At right are 2 sensitivities from the 2+1 fit
- The dashed is the normal fit, solid has sterile matter effects arbitrarily turned off
- $|U_{\mu 4}|^2$ limit is unaffected it is independent of the sterile matter effects

When is Δm_{41}^2 no longer "large"?

- When do the oscillations no longer appear fast?
 - This will be the worst at short L's and large E's, so lets focus on Up- μ with cos $\theta_z > -0.1$
 - Loop through all these events and calculate the mean of $\sin^2(\Delta m^2L/4E)$ for various Δm^2
- Doing this, the approximation is valid down to $\sim 0.8 \text{ eV}^2$

When is Δm_{41}^2 no longer "large"?

- However, the limit on $|U_{\mu 4}|^2$ is driven by the low $|U_{\tau 4}|^2$ region.
 - In this region, the dominant samples are Sub-GeV muons
 - Almost no power comes from Up- μ
- For these samples, the "large" assumption is ~always valid so $|U_{\mu 4}|^2$ limit really is a vertical line in Δm^2 to a good approximation

Our Matter Effect Model

• The μ to μ probability is fairly simple:

$$P_{\mu\mu} = (1 - d_{\mu})^2 |\tilde{S}_{22}|^2 + d_{\mu}^2$$

• Get $|S_{22}|^2$ by diagonalizing the sum of the vacuum and matter Hamiltonians:

$$H^{(2)} = H_{sm}^{(2)} + H_{s}^{(2)} :$$

$$= \frac{\Delta m_{31}^{2}}{4E} \begin{pmatrix} -\cos 2\theta_{23} & \sin 2\theta_{23} \\ \sin 2\theta_{23} & \cos 2\theta_{23} \end{pmatrix} \pm \frac{G_{F}N_{n}}{\sqrt{2}} \begin{pmatrix} |\tilde{U}_{s2}|^{2} & \tilde{U}_{s2}^{*}\tilde{U}_{s3} \\ \tilde{U}_{s2}\tilde{U}_{s3}^{*} & |\tilde{U}_{s3}|^{2} \end{pmatrix}$$

Our Matter Effect Model

 This gives us a ~familiar matter-effect probability

$$|\tilde{S}_{22}|^2 = 1 - \sin^2(2\theta_m)\sin^2(f_m L)$$

$$f_{m} = \sqrt{A_{32}^{2} + A_{s}^{2} + 2A_{32}A_{s} \left(\cos(2\theta_{23})\cos(2\theta_{s}) + \sin(2\theta_{23})\sin(2\theta_{s})\right)}$$

$$E_{1,2}^{m} = \pm f_{m}$$

$$\sin 2\theta_{m} = \frac{A_{32}\sin(2\theta_{23}) + A_{s}\sin(2\theta_{s})}{f_{m}}$$

$$A_{32} = \frac{\Delta m_{31}^{2}}{4E}$$

$$A_{s} = \pm \frac{G_{F}N_{n}}{2\sqrt{2}}$$

$$\sin 2\theta_{s} = \frac{2\sqrt{d_{\mu}d_{\tau}d_{s}}}{(1 - d_{\mu})}$$

$$\cos 2\theta_{s} = \frac{d_{\tau} - d_{\mu}d_{s}}{(1 - d_{\mu})}$$
29

Our Matter Effect Model

$$P_{\mu\mu} = (1 - d_{\mu})^2 |\tilde{S}_{22}|^2 + d_{\mu}^2$$

$$P_{\mu\tau} = (1 - d_{\mu})(1 - d_{\tau}) + (d_{\mu}(1 - d_{\mu}))$$
$$- d_{s}(1 + d_{\mu})|\tilde{S}_{22}|^{2} - \sqrt{d_{\mu}d_{\tau}d_{s}} \left(\tilde{S}_{23}\tilde{S}_{22}^{*} + \tilde{S}_{23}^{*}\tilde{S}_{22}\right)$$

$$P_{\mu s} = (1 - d_{\mu})(1 - d_{s}) + (d_{\mu}d_{s} - d_{\tau})|\tilde{S}_{22}|^{2} + \sqrt{d_{\mu}d_{\tau}d_{s}} \left(\tilde{S}_{23}\tilde{S}_{22}^{*} + \tilde{S}_{23}^{*}\tilde{S}_{22}\right)^{2}$$

$$|\tilde{S}_{22}|^2 = 1 - \sin^2(2\theta_m)\sin^2(f_m L)$$
$$\left(\tilde{S}_{23}\tilde{S}_{22}^* + \tilde{S}_{23}^*\tilde{S}_{22}\right) = -2\sin(2\theta_m)\cos(2\theta_m)\sin^2(f_m L)$$

Our Parameters: $|U_{\mu 4}|^2$

- Amount mixing between ν_{μ} and the sterile mass state ν_{4}
- Primary effect is extra ν_{μ} disappearance at all path lengths
- Is directly comparable to SBL measurements of ν_{μ} disappearance ($\theta_{\mu\mu}$) and indirectly to the MB/LSND appearance signal ($\theta_{\mu e}$)
- With more sterile neutrinos, becomes a more generic parameter d_u , but out limit is still applicable:

$$d_{\mu} = \frac{1 - \sqrt{1 - 4A}}{2} ,$$

$$A = (1 - |U_{\mu 4}|^2 - |U_{\mu 5}|^2 - |U_{\mu 6}|^2)(|U_{\mu 4}|^2 + |U_{\mu 5}|^2 + |U_{\mu 6}|^2) + |U_{\mu 4}|^2|U_{\mu 5}|^2 + |U_{\mu 4}|^2|U_{\mu 6}|^2 + |U_{\mu 5}|^2|U_{\mu 6}|^2 .$$

Our Parameters: $|U_{\tau 4}|^2$

- Amount mixing between v_{τ} and the sterile mass state v_4
- Controls ν_{μ} -> ν_{τ} vs. ν_{μ} -> ν_{s} fraction
 - Previous SK sterile measurements have implicitly limited this parameter
- This parameter ~scales the size of sterile-NC matter effects
- Also responsible of NC disappearance over long baselines
- Private to long-baseline and atmospheric measurements
 - But still interesting for understanding atmospheric oscillations